On the bandwidth of triangulated triangles
نویسندگان
چکیده
We give a technique for obtaining a lower bound on the bandwidth of any planar graph with an embedding in which all bounded faces are triangles. This technique is applied to show that, for each positive integer 1, the triangulated triangle T~ with side-length 1 has bandwidth exactly I + 1. This settles a question of Douglas West.
منابع مشابه
Acute Triangulations of Doubly Covered Convex Quadrilaterals
Motivated by various applications triangulations of surfaces using only acute triangles have been recently studied. Triangles and quadrilaterals can be triangulated with at most 7, respectively 10, acute triangles. Doubly covered triangles can be triangulated with at most 12 acute triangles. In this paper we investigate the acute triangulations of doubly covered convex quadrilaterals, and show ...
متن کاملAcute Triangulations of Pentagons
An acute triangulation is a triangulation whose triangles have all their angles less than π 2 . In this paper we prove that i) every planar pentagon can be triangulated into at most 54 acute triangles, and ii) every double pentagon can be triangulated into at most 76 acute triangles.
متن کاملLocally finite triangulated categories ✩
A k-linear triangulated category A is called locally finite provided ∑ X∈indA dimk HomA(X,Y ) < ∞ for any indecomposable object Y in A. It has Auslander–Reiten triangles. In this paper, we show that if a (connected) triangulated category has Auslander–Reiten triangles and contains loops, then its Auslander–Reiten quiver is of the form L̂n: · · · · ̂ n n− 1 2 1 By using this, we prove that the Aus...
متن کاملOn Tensor Product of Graphs, Girth and Triangles
The purpose of this paper is to obtain a necessary and sufficient condition for the tensor product of two or more graphs to be connected, bipartite or eulerian. Also, we present a characterization of the duplicate graph $G 1 K_2$ to be unicyclic. Finally, the girth and the formula for computing the number of triangles in the tensor product of graphs are worked out.
متن کاملSimilar Triangles, Another Trace of the Golden Ratio
In this paper we investigate similar triangles which are not congruent but have two pair congruent sides. We show that greatest lower bound of values for similarity ratio of such triangles is golden ratio. For right triangles, we prove that the supremum of values for similarity ratio is the square root of the golden ratio.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete Mathematics
دوره 138 شماره
صفحات -
تاریخ انتشار 1995